Quantum expanders from any classical Cayley graph expander
نویسنده
چکیده
We give a simple recipe for translating walks on Cayley graphs of a group G into a quantum operation on any irrep of G. Most properties of the classical walk carry over to the quantum operation: degree becomes the number of Kraus operators, the spectral gap becomes the gap of the quantum operation (viewed as a linear map on density matrices), and the quantum operation is efficient whenever the classical walk and the quantum Fourier transform on G are efficient. This means that using classical constant-degree constant-gap families of Cayley expander graphs on e.g. the symmetric group, we can construct efficient families of quantum expanders.
منابع مشابه
Quantum expanders and the quantum entropy difference problem
Classical expanders and extractors have numerous applications in computer science. However, it seems these classical objects have no meaningful quantum generalization. This is because it is easy to generate entropy in quantum computation simply by tracing out registers. In this paper we define quantum expanders and extractors in a natural way. We show that this definition is exactly what is nee...
متن کاملCayley Graph Expanders and Groups of Finite Width
We present new infinite families of expander graphs of vertex degree 4, which is the minimal possible degree for Cayley graph expanders. Our first family defines a tower of coverings (with covering indices equals 2) and our second family is given as Cayley graphs of finite groups with very short presentations with only 2 generators and 4 relations. Both families are based on particular finite q...
متن کاملAn Explicit Construction of Quantum Expanders
Quantum expanders are a natural generalization of classical expanders. These objects were introduced and studied by [1, 3, 4]. In this note we show how to construct explicit, constant-degree quantum expanders. The construction is essentially the classical Zig-Zag expander construction of [5], applied to quantum expanders.
متن کاملSymmetric Groups and Expanders
We construct an explicit generating sets Fn and F̃n of the alternating and the symmetric groups, which make the Cayley graphs C(Alt(n), Fn) and C(Sym(n), F̃n) a family of bounded degree expanders for all sufficiently large n. These expanders have many applications in the theory of random walks on groups and other areas of mathematics. A finite graph Γ is called an ǫ-expander for some ǫ ∈ (0, 1), ...
متن کاملSome new Algebraic constructions of Codes from Graphs which are good Expanders∗
The design of LDPC codes based on a class of expander graphs is investigated. Graph products, such as the zig-zag product [9], of smaller expander graphs have been shown to yield larger expanders. LDPC codes are designed based on the zigzag product graph of two component Cayley graphs. The results for specific cases simulated reveal that the resulting LDPC codes compare well with other random L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 8 شماره
صفحات -
تاریخ انتشار 2008